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When analyzing the temperature conditions in extended underground collectors, heat inflow from the surrounding 
mass plays an important  part. In this case the heat-exchange model  in the case of  filtering becomes two-dimensional. The 
ibrmulation of the problem can be simplified considerably if one assumes the filtering region to be one-dimensional, but  in 
this case on the boundary with an impenetrable mass a boundary condition of  the third kind must be satisfied. In all 
papers in thermal rock physics which follow this procedure [ I-3] the problem arises of de'termining the heat-transfer co- 
efficient at the mass-porous sheet boundary.  Since the processes occurring in the media when filtering is taking place are 
fairly slow, it is possible to use the quasistationary approximation. The problem of  the heat transfer from the walls of  
channels with a coveting also arises in chemical technology. Various empirical formulas have been proposed for determining 
the heat-transfer coefficients, which usually hold within narrow limits of  the defining criteria. Calculations using the 
recommended relations lead to considerable spread in the values of the heat-transfer coefficients. A detailed review of this 
area is given in [4]. There are no theoretical investigations on calculating the heat-transfer coefficients to the walls of  a 
channel when a liquid is being filtered inside it. 

In this paper, to calculate the heat transfer coefficient we will consider a double-layer mode (Fig. 1). We will assume 
that considerable resistance is concentrated on the wall in the region of  a sharp temperature gradient, where obviously, molec- 
ular heat transfer occurs. The thickness of this region ~T is not  in general the same as the thickness of  the hydrodynamic 
boundary layer 5r" In the nucleus of  the flow, due to random interlocking of  the current lines on the covering, the heat 
transfer coefficients are given by [4-6] 

ke/~/ = c t ~ c 2 Re r Pr. 

I f  we neglect the longitudinal heat transfer (for long tubes) and assume a steady-state profile for the velocity of the liquid 
at the input to the heated part,  the energy equation for the nucleus of the flow" can be written in the form 

uOt/Ox = (~e/Cv~i)[a2t/Or "" @ (l/r)Ot/Or] 

o r  

Ot/Ox = a [O~'t/Or ~" + (t/r)Ot/Or ], 

where a = Xe/ep~u ; for x =. 0, t = t o ; q = const for r = R - -  ~r; Ot/Or = 0 when r = 0. The solution of this equation has 
the form 

t (r, x) = to -k (qR/Le) [2az /B ~ - -  (i/4)(i - -  2rVR~)l - -  ~= rt~] ~ (~n) 

where R - -  6r "" R, since ~T << R. In the stabilized case, when the thermal layers are closed, 

t(r, x) = to -k (qB/ �89 )[2ax/R 2 - -  (1/4)(t - -  2F'/R2) ]. 

Hence, the  temperature at the boundary of  the two zones 

t s = t o ~, 2qax/~,eR ~ (q/4)R/~ e �9 

The mean volume temperature in the stabilized part is 

2 ~ 2 . 2qaz qR rdr to 2g 

0 o 

Hence ~ - -  ts = - - ( t /4)qR/Ze ,  q = 4Ze(ts - -  t ) /R .  

The thermal flux for the region near the walls can be written in the form 

gw= ~ (tw - ts)/~r. (1) 

Novosibirsk. Translated from Zhurnal Pfikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp.  53-58, November- 
December, 1980. Original article submitted November 16, 1979. 
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Fig. 1 

Equating the thermal fluxes in the first and second zones 

~t (tw - -  ts)/6r = 4he(ts - -  ~)/R, 

we obtain 

ts = [(Lz 18r)tw + 4 ~ I R ] I ( L  118r + 4~.JB). 

Substituting the value of  t s in Eq. (1) we find 

q~ = (t~ - -  7)/(R/4~ + ~,/h ), 

and for the heat transfer coefficient 

~z ---- q~l(t w --t) = t/(R14~ e + 8rl~. t ). 

It is necessary to determine the quantity 8 r . Our main assumption is the hypothesis that effective transfer begins from the 
instant when an instability occurs and eddy formation begins when flow occurs round the elements of  the coating. In this 
case the local velocity, which increases on the walls in accordance with the law u = r y / p ,  reaches a certain critical value, 
so that the Reynolds number corresponding to this velocity, constructed from the dimensions of  the particles, becomes 
critical: 

(%Srcl~l~)lv ---- Re*. (2) 

We will assume that Re* is constant for all porous coatings with spherical elements. The friction r on the walls of the 
W 

channel is found in [7] by solving the hydrodynamic problem and has been confirmed experimentally by an electrochemical 
method. We chose as a basis the Brinkman filtering equation [8], which is the superposition of  Darcy's law and the equation 
for viscous flow in a channel. 

It is shown in [7] that when Be/l/A" > t 0 ,  where K is the permeability coefficient of  the coating, the friction on 
the walls of  a circular channel is given by 

~ ,  = ~IVK?. (3) 
From Eq. (2), using (3), we determine the value of  8 r : 

8r = Re*v~/%d~.  

Finally we obtain for c~ 

a = t / [ l t e * m / ~ . z  + n/&e], 

where K(m) = m 2 /180(1 - m 2 ) is Karman's constant. The effective thermal conductivity X e can be found from the equa- 
tion obtained in [5], according to which, for glass spheres and a radio dr/d = 0.12-0.17: 

~e/Lz ---- 6 + 0.09 Pr Bet ,  (4) 

The dimensionless heat-transfer coefficient, taking (4) into account is 

Nu == t /[Re*V K~ '~ /Re  ~ 1/8(6 + 0.09PrRe,)]. (5) 

To check the theoretical model obtained we carried out experimental investigations of  the heat transfer using the 
arrangement shown in Fig. 2. 

We investigated the heat-transfer coefficient under conditions of  constant thermal flow on the walls. This method of  
determining the heat-transfer coefficients is much easier and more accurate than the method assuming constant wall tempera- 
ture employed in [4, 5]. 

The apparatus was constructed in the form of  a circulation contour. The working liquid (water) from a reservoir 6 
was applied by means of  a centrifugal pump 4 to a tank at a constant level 5. The liquid is returned to the reservoir from 
the tank through the rotameter 7, the hydrodynamic stabilization section 1 (of length 150 gauges), the experimental section 
2, and the mixer 3. 

The experimental section consists of  a copper tube of  internal diameter 15 mm, wall thickness 1.5 mm, and length 
370 ram. A nichrome wire is wound with uniform pitch onto the external wall of  the experimental part (through a thin 
layer of insulation). The electric heater is insulated from the external wall with asbestos. The temperature of  the walls of  
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the tube was measured at eight points along the length using a nichrome-constantan thermocouple laid in special grooves. 
The heat losses to the surrounding medium were found by calibration experiments when there was no liquid flowing through 
the working section. To determine the heat losses the temperature of the heater and the surrounding medium were measured 
in each experiment. 

It can be shown that for a constant heat flux at the walls the mean-mass temperature of the liquid varies linearly 
along the length. Hence, in the experiments we measured the temperature at the input to the experimental section and the 
calorimetric temperature of the liquid after the mixer at the output. 

We first carried out experiments to investigate the heat transfer from the walls of the tube to the flow of liquid in 
the channel without a coating of spheres. 

The experimental data obtained for laminar flow of the liquid are shown in Fig. 3 in the form of curves of Nu = 
f(x/Pe d). Here the points represent the local values of the dimensionless heat-transfer coefficients for several values of the 
dimensionless length x/d = 4.3, 7.5, 10.7, 14.2, 17.25, and 20.4, and Re in the range from 100 to 2000, and the line 
represents a curve of [91 

Nu = t.3t [( t /Pe)(x/d)]-x/a  

which holds for the initial part of the tube with the boundary condition qw = const. It can be seen that the majority of 
experimental results lie within the limits of the initial thermal part. There is ,satisfactory agreement between the experimental 
and theoretical data. For large values of the relative length (1/Pc) (x/d) the value of the Nu number differs by 5-10% from 
the theoretical value of the Nu number in the stabilized part. 
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For turbulent flow the length of thermal stabilization is considerably less, and over the greater part of the tube 
the heat-transfer coefficient is constant. In Fig. 4 we plot values of Nu in the stabilized thermal part as a function of Re, 
which shows that the experimental data (the points) agree quite well with the relation [ 10] Nu = [(~/8)Re Pr]/[t,07 + 

12.7(]f~)(Pr~/8--t)] , which is represented by the line. 

The main experiments were carried out when the experimental part was filled with spheres. Two series of experi- 
ments were carried out: with glass spheres 3.2 mm in diameter and with polystyrene spheres 1.07 mm in diameter. The- 
permeability coefficient for both forms of coatings was found by the method described in [ 11 ]. The change in the 
dimensionless local heat-transfer coefficient along the length of the tube when there were spheres in the tube is shown in 
Fig. 5 (1, Re = 250; 2, Re = 360; 3, Re = 680; 4, Re = 880). It can be seen that in this case over a comparatively small 
distance from the input thermal stabilization begins. Figure 6 shows the Nu number over the stabilized part as a function 
of the Re number, where the lines denote the values of Nu calculated using Eq. (5) for Re* = 100 (1, d r = 3.2 mm; 2, 
d r = 1.07 mm). Satisfactory agreement between the theoretical and experimental data is observed (Fig. 6). 

For a further check of the model it is necessary to carry out experiments over a wider range of Re values and dr/d 
ratios. 
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